

Center for Science of Precision Multifunctional Nanostructures for Electrical Energy Storage Gary Rubloff (University of Maryland)

The EFRC will pursue multifunctional nanostructures as the basis for a next generation of high performance electrical energy storage to:

- power electric vehicles over long distances and recharge quickly, and
- capture, hold, and deliver energy from renewable sources.

Nanostructured electrodes Uniform arrays of heterogeneous multifunctional nanostructures Nanoscale science of materials, interfaces, charge transport & cycling, mechanical stability e-

Electrical energy storage system

EFRC features:

- Metal oxide and silicon nanowires to hold and cycle charge
- Carbon-nanowire composite nanostructures for faster charge transport and structural stability during charge cycling
- Fundamental understanding of nanostructure synthesis, properties, and electrochemical behavior, supported by novel instruments and theory
- Uniform, predictable structures for scientific analysis and as prototypes of massive arrays in future technology

